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Abstract. Numerical studies of the dimensionless conductanceg in 3D metal–insulator systems
are reported. A site quantum percolation model is defined. It consists of two semi-infinite
ideal metal electrodes and a disordered sample of sizeL × L × L located between them.
The disorder of the sample is controlled by the metal fractionp of conducting particles
randomly occupying the sites of the cubic lattice with probabilityp. A tight-binding one-
electron Hamiltonian with diagonal disorder and a probability density of site energies of the
form P(εn) = p δ(εn) + (1 − p) δ(εn − ∞) is considered. Magnetic field is also introduced
into the model. The conductanceg is calculated using the Landauer–Büttiker formula and the
Green’s function technique. It is found that above the classical percolation threshold—that is, for
p > pc ' 0.312—a second critical point exists denoted asp = pq . In the regionpc < p < pq ,
g ∼ exp(−L/ξloc), whereξloc is the localization length, the system is localized, while in the
range wherep > pq the conductance tends to indicateg ∼ L metallic-type behaviour. By fitting
the estimated data onβ(g) versus lng to the approximate relation for the scaling functionβ valid
in the vicinity of the critical point, the critical conductance is estimated to begc = 1.32± 0.19
and the correlation length critical exponent is estimated to beν = 1.6± 0.2. Using a finite-size
scaling techniquepq = 0.44 ± 0.01 andgc = 1.28 ± 0.09 are also found. Both estimates of
gc are expressed in units ofe2/h and are in good agreement with one another. It is found that
in the region wherep < pq the system indicates positive magnetoconductance typical for a
disorder-induced localized states phase, while in thep > pq region the magnetoconductance is
negative as expected for an extended states phase.

1. Introduction

The evaluation of electrical transport properties of disordered electronic systems has been
the subject of a number of theoretical and experimental studies over almost four decades
[1]. According to the scaling theory [2] the logarithmic derivativeβ(g) = d lng/d lnL,
which describes the dependence of the dimensionless conductanceg on the system size
L, is a function ofg alone and this function allows one to describe the behaviour of the
electronic system when its disorder is varied. In particular, when the dimensionalityd > 2,
β(g) = 0 separates the extended states (metallic) phaseβ(g) > 0 from the localized states
phaseβ(g) < 0. Ford 6 2 the wave functions are always exponentially localized, and there
is no phase transition in this case. A comprehensive review of electron localization and of
the localization transition in the presence of a scattering random potential has been recently
given by Kramer and MacKinnon [3]. Other related reviews of this problem including the
effects of electron–electron interaction have been given by Lee and Ramakrishnan [4] and,
quite recently, by Belitz and Kirkpatrick [5]. The cited reviews may also be considered
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as a source of further references on numerical studies of the localization transition in the
presence of disorder characterized by continuous distributions of site energies.

In numerical studies of disordered electronic systems one often formulates the problem
within the framework of a tight-binding Hamiltonian [6–8]:

H =
∑
n

|n〉εn〈n| +
∑

n,m,n 6=m

exp

(
−2π i

φ0

∫ m

n

A dl

)
|n〉Unm〈m| (1)

where Unm are hopping matrix elements which vanish unlessn and m are nearest
neighbours,|n〉 represents a wave function localized near the siten, φ0 denotes the unit
quantum fluxh/e with e andh being the electronic charge and Planck constant respectively,
and A is the vector potential of the magnetic field. In the case of the original Anderson
localization problem, the site energiesεn are uniformly distributed over some width which
is a measure of the degree of disorder. For quantum percolation systemsεn is described by
a binary distribution which for the site percolation case is [7, 8]

P(εn) = p δ(εn − εA) + (1 − p) δ(εn − εB) εA = −εB. (2)

Here δ = |εA − εB |/zU = 2εA/zU determines the degree of disorder,z is the number of
nearest neighbours,Unm = U is a constant andp (1 − p) is the concentration of sites
A (B). Soukouliset al [7, 8] have calculated the mobility edge trajectory, i.e. the line in
coordinatesp versus the electron Fermi energyE above which the system behaves as a
metal (the extended states phase) while it shows insulating behaviour (the localized states
phase) below this line. On this basis they found the relation of the quantum percolation
thresholdpq to the Fermi energyE for both site and bond percolation problems. Their
calculations were performed with the help of the transfer matrix method of MacKinnon and
Kramer [9] for varied but finite values of the disorder strengthδ. In this method they used
long bars of sites having square cross sectional areas ofM2 for which they determined an
estimate of the localization length versusM. By increasingM they were able to find the
best estimate of localization length for the system studied. This, applied for different values
of the concentrationp, allowed them to find the mobility edge trajectory. The lowest value
of pq found waspq = 0.44 ± 0.01, corresponding toE = 0.5 measured in units of the
transfer energyU . In addition they also calculated the structure of the density of states
obtaining aδ-function spike in the centre of the subbandE = εA and gap regions on both
sides of the central spike in which no states were found. For larger concentrationsp no
structure (neither a central spike nor a gap) was found in the density of states at around
E = 0 (i.e. E = εA).

In this paper we present results of numerical studies of quantum percolation systems
with a site energy distribution which is characteristic of metal–insulator nanocomposites:

P(εn) = p δ(εn) + (1 − p) δ(εn − ∞) (3)

wherep (1−p) is probability that a site is occupied by a metallic particle (by the insulator).
Thus the site energy randomly takes only the valuesεn = 0 andεn = ∞ for the metal and
insulator respectively, and the disorder strengthδ = ∞.

Our quantum percolation model is addressed to metal–insulator nanocomposites,
e.g. RuO2–glass [10] and granular metal films [6], and it differs byP(εn) given by
equation (3) from the previously studied 3D quantum percolation models whereP(εn)

has the form of equation (2) [7, 8]. The present studies originated from the intention to
model the quasi-bicritical transport behaviour of RuO2–glass films. This behaviour has
been inferred from studies of the resistance and 1/f noise versus composition as well as
resistance versus temperature for different compositions in these films [10, 11, 12]. There
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are two important features observed in the above-mentioned experimental dependencies:
(i) the temperature coefficient of resistance (TCR) estimated at room temperature changes
its sign at a metal concentration lying well above the classical percolation thresholdpc;
(ii) in the vicinity of the concentration at which the room temperature TCR changes its
sign, 1/f noise relative power spectral density strongly increases. These features have been
qualitatively described within the framework of the random resistor network with a three-
point bond conductance distribution [11]. Such a network indicates two classical transition
points: a percolation threshold atpc and another one atp′

c corresponding to a transition from
transport dominated by poorly conducting (but with finite conductance) bonds to transport
dominated by well conducting bonds. We think now, however, that in consideration of the
electronic transport properties in metal–insulator nanocomposites in which metallic particles
are as small as 100̊A, quantum interference phenomena should be taken into account, and,
if they are, Anderson localization and an Anderson transition above the classical percolation
threshold should take place and in some circumstances may be observed. The resistance
versus temperature studies of RuO2–glass films that we are carrying out at present seem to
confirm this suggestion [12].

In this paper we numerically calculate, using the Landauer–Büttiker formula [13] and
the Green’s function technique [14, 15], the dimensionless conductance versus linear size
L of the lattice, concentrationp of metallic particles and magnetic field inductanceB for
an electron Fermi energyE = 2.0. We quantitatively estimate and describe the quantum
percolation thresholdpq lying at pq > pc in our quantum percolation model.

2. Description of the model

We study the quantum site percolation problem on a simple cubic lattice [15]. A fractionp

of the sites are occupied by metallic particles and we consider only percolating samples in
the regime wherep > pc ' 0.312, i.e. above the classical percolation threshold. In order to
calculate the conductance we connect two opposite walls of a sample of sizeL×L×L with
perfect leads, i.e.p = 1. We utilize a model of small linear sizeL ranging from 3 to 8 for
the following reasons. The finite-size scaling technique that we apply requires small sample
sizes since it works well close to the critical pointβ(g) = 0. In particular, the conductance
gc is estimated in this paper from extrapolation of the scaling relationsg(L, p) to the point
g(p = pq, L = 0). The magnetic field is applied perpendicularly to one pair of the walls
which are not connected to the leads. The Hamiltonian of the quantum percolation model is
given by equation (1) with the site energy distribution given by equation (3). The nearest-
neighbour hopping matrix elementU is taken to be−1 and the electron Fermi energyE is
expressed in the units of absolute value ofU . The linear sizeL of the model is measured in
units of lattice spacinga assumed as equal to 100Å, i.e. a typical conducting particle size
in RuO2–glass [10] and granular metal [6] nanocomposites. We follow here the concept of
a 2D quantum site percolation model on a square lattice elaborated by Sheng and Zhang
[6] to describe Anderson localization in granular metal films that are 2D metal–insulator
nanocomposites; 100̊A metallic particles occupy randomly the sites of a square lattice in
this model. In our previous paper [15] we presented a 3D extension of the Sheng and
Zhang model together with some preliminary results concerning dimensionless conductance
and the quantum percolation threshold for an electron Fermi energyE = 0.01. As can be
seen from the lattice spacing, it is not the original microscopic crystal lattice model. Two
nearest-neighbour metallic particles are connected in this model by a short (much shorter
than the particle size) confinement or constriction between them. So we can consider here an
elementary unit: metallic particle–confinement–metallic particle, which is not like a typical
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superlattice system but, rather, like two metallic quantum dots separated by a small and thin
cusp of the scattering potential. Transfer of an electron from one metallic particle to the
adjacent one is described in our model by the second term of the tight-binding Hamiltonian
(equation (1)). The dimensionless conductance of the model is evaluated by using the
multichannel Landauer–B̈uttiker formula [13]:

g = G

e2/h
= 4

( L0∑
i=1

Ti

)( L0∑
i=1

v−1
i

)/( L0∑
i=1

(1 + Ri − Ti)v
−1
i

)
(4)

where L0 is the number of quantum channels in the leads, the terms inTi and Ri are
summations of transmission and reflection matrices overL0, vi is the channel velocity, and
G is the sample conductance. The transmission and reflection matrices have been calculated
with the help of the retarded Green’s function method. We have chosen equation (4) for
calculating the dimensionless conductance since it includes satisfactorily (from the viewpoint
of our purpose) the transport properties of the disordered electron system. That is, at each
value of the Fermi energyE one finds in this approach the solution forkx in the following
dispersion relation:

E/U = 2(coskxa + coskya + coskza) (5)

where the discrete transverse wave-vector values areky = πl/(L+2) andkz = πm/(L+2)

with l, m taking the values 1, 2, . . . , L, i.e. a hard-wall boundary condition is assumed here.
Each valueki

x that is a solution of equation (5) determines one conducting channel with a
particular value of the Fermi velocityvi = ∂E/∂kx evaluated atkx = ki

x . The numberL0

of these conducting channels—that is, the number of values ofki
x (or vi)—together with

vi, Ti andRi , influence the conductance of the system in equation (4). The above-described
approach based on the Landauer–Büttiker formula takes into account two parameters,L0

andvi , which are not included in some other related numerical techniques. For more details
concerning the calculational technique see [14] and [15].

3. Results and discussion

We have performed numerical calculations of the dimensionless conductanceg for the
above-described quantum percolation model in which disorder was varied by varying the
concentrationp of occupied sites. These calculations made for different lattice sizesL

allowed us to distinguish between the extended states phase and the localized states phase
on the basis of theg ∼ L andg ∼ exp(−L/ξloc) dependencies which characterize the two
phases respectively.ξloc denotes here the localization length of the electronic wave function.
The conductance has been calculated as both a geometric average, e〈ln g〉, and an arithmetic
average over 10 000, 5000, 1000, 500, 500 and 500 configurations forL = 3, 4, 5, 6, 7
and 8 respectively. In general, the geometric average has been used here to estimate the
dimensionless conductance in the localized regime where the self-averaging quantity is lng

and notg itself. On the other hand, the arithmetic average has been used in the metallic
regime where dimensionless conductance appears as the self-averaging quantity.

In figure 1 we show theg versusp relations obtained for the electron Fermi energy
E = 2.0. We have chosen in this figure the geometric average as an estimate ofg in the
localized regime and in the metallic regime as well. It is, then, in the metallic regime not the
best estimate ofg. However, in the metallic regime the geometric and arithmetic averages
differ by 22% atp = 0.45 and this difference decreases to 2.8% for p = 0.8. Since we
draw only qualitative conclusions from figure 1 the relations plotted on a logarithmic scale
for the conductance are quite satisfactory for such purposes. From this figure one can easily
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Figure 1. The dimensionless conductanceg (equation (4)) of the 3D quantum percolation
model versus the concentrationp of metallic particles. The geometric average〈g〉 = e〈ln g〉 has
been estimated over 10 000, 5000, 1000 configurations forL = 3, 4, 5 respectively and 500
configurations forL = 6, 7, 8.

see the critical point which may be described by a critical concentrationpq and by a critical
conductancegc in such way that in the range wherep < pq (or equivalentlyg < gc)
the conductance strongly decreases while whenp > pq (or g > gc) it increases with the
lattice sizeL. We have verified the exponential conductance decay and linear conductance
increase withL for p < pq andp > pq respectively. From figure 1 we roughly estimate
pq ' 0.44 andgc ' 1 in units ofe2/h (see equation (4)) orgc ' 0.16 in units ofe2/h̄. We
will look for pq- andgc-values more carefully in the following.

In figure 2 we collect together data points of the scaling function calculated as a
numerical logarithmic derivative, using pairs of values forg and L. The set of points
presented includes the data shown in figure 1, but in addition we have also included results
for p = 0.41, 0.42, 0.43, 0.44, 0.46, 0.47, 0.48, 0.49 to increase the number of points in
the vicinity of the critical point. The familiar shape of the scaling functionβ(g) [2] can
be recognized from the set of results shown. Close to the critical pointβ(g) = 0 the
approximate formula [16]

β ≡ d lng

d lnL
' 1

ν
(ln g − ln gc) (6)

is fulfilled. Hereν is critical exponent describing divergence of the correlation lengthξ

ξ ∼
(

g − gc

gc

)−ν

∼
(

p − pq

pq

)−ν

(7)

at the critical point. Below the critical point the correlation length is simply equal to
the localization length,ξloc, while for g > gc (p > pq) it is such a characteristic length
that for L > ξ Ohmic behaviourg(L) ∼ Ld−2 is observed. From equation (6) it is
clear that the slope ofβ versus lng as β crosses zero is 1/ν. On the basis of this we



2986 A W Stadler et al

Figure 2. The scaling functionβ versus the natural logarithm of dimensionless conductanceg

(equation (4)), estimated as a numerical logarithmic derivative using pairs of values forg andL.
The straight line in the inset has been found from the least-squares fit of the numerical results
in the range ofp bounded to (p = 0.4, p = 0.5) to the approximate formula (6) expected to
hold close to the pointg = gc.

have foundν = 1.6 ± 0.2 and gc = 1.32 ± 0.19 or gc = 0.21 ± 0.03 in units of e2/h̄

from the least-squares fit of the straight-line equation to the numerical data bounded to the
range (p = 0.4, p = 0.5). The estimate obtained forν can be compared with the result
ν = 1.05± 0.1 found for metal–insulator transition induced by the magnetic field in diluted
magnetic semiconductors below 1 K [17]. The value ofν = 0.99± 0.04 has been extracted
from numerical studies of the Anderson model with a Gaussian distribution of site energies
[18]. A very recent numerical scaling experiment on the Anderson model with a uniform
distribution of site energies based on the Kubo–Greenwood expression has led, however, to
the value ofν = 1.5±0.2 [16]. The same value (in fact,ν = 1.5±0.1) has been published
by Kramer and MacKinnon [3]. We have to point out here that our results forν have been
found for one particular value of the Fermi energy,E = 2.0.

To test quantitatively how the dimensionless conductanceg depends on the lattice size
L we have plottedg versusL for different metallic particle concentrations (figure 3). In the
range wherep < pq (figure 3(a)), the scale ofg is logarithmic and straight-line relationships
of the form lng ∼ −L/ξloc have been verified for differentp-values. In particular, one
can see that the magnitude of the straight-line slope decreases continuously to zero as
p approachespq ; thus ξloc → ∞ with p → pq is observed. On the basis of this we
can, with more confidence than from figure 1, estimatep−

q = 0.44 as the highest metal
concentration for which a negative slope is still observed. Forp = 0.45 a positive slope
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Figure 3. The dimensionless conductanceg versus the linear size of the 3D quantum
percolation model for different concentrationsp of occupied sites. (a) Verification of the
scaling formulag = gc exp(−L/ξloc) in the range wherep < pq and an estimation ofgc

from the intersection of the straight line with the negative slope of smallest magnitude with the
g axis, g−

c = g(p = 0.44, L = 0); 〈g〉 denotes the geometric average ofg over 10 000,
5000 configurations forL = 3, 4 respectively and 2000 configurations forL = 5, 6, 7, 8.
(b) Verification of the scaling formulag = gc + γ (L/ξ)1/ν in the range wherep > pq and an
estimation ofgc from the intersection of the straight line having the positive slope of smallest
magnitude with theg axis, g+

c = g(p = 0.44, L = 0); 〈g〉 denotes the arithmetic average over
the same number of configurations as in (a);ν ' 1.6± 0.2 found in this work has been used for
theL1/ν axis. ForL = 3, variation ofp with the step 0.01 does not result in any change ofg.

of the straight line first appears. We can also estimategc with the help of the relation
g = gc exp(−L/ξloc) which is expected to hold slightly below the critical point. With a
logarithmic scale forg we findgc as the intersection of the straight line having the negative
slope of the smallest magnitude with theg axis: g−

c = g(pq = 0.44, L = 0). On this basis
we find g−

c = 1.12 ± 0.09 or, in units ofe2/h̄, g−
c = 0.178± 0.014, which is in good

agreement withgc = 1.32± 0.19 (gc = 0.21± 0.03 in units ofe2/h̄) found fromβ versus
lng at β = 0 (equation (6)).

On the other side of the critical point, forp > pq (figure 3(b)) one expects, far above
pq , a linear relationship forg versusL. Close topq , however, finite-size scaling shows [16]
that the conductance should scale asg = gc+γ (L/ξ)1/ν whereγ is a constant. On the basis
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of our estimate ofν = 1.6±0.2 found fromβ versus lng (figure 2) we have plottedg versus
L1/ν ' L0.625 for p in the range 0.42–0.49. A linear conductance scale and an arithmetic
average have been used in this case. As can be seen, the results plotted in such coordinates
can be fitted to the straight lines with a slope which decreases asp decreases fromp = 0.50
down to 0.44. Forp = 0.44 we observe a very small but positive slope, while forp = 0.43
the slope starts to be negative, also with a very small magnitude. Thus we estimate here
p+

q = 0.44 which is equal top−
q . By extrapolating the straight line forp = 0.44 to L = 0

we find from the intersection with theg axis g+
c = g(p = 0.44, L = 0) = 1.44 ± 0.09

(or g+
c = 0.230± 0.014 in units ofe2/h̄). The two procedures of approaching the critical

point from below and from above allow us to estimate the quantum percolation threshold
value aspq = 0.44± 0.01. We estimategc as the arithmetic average ofg−

c andg+
c ; thus

gc = 1.28 ± 0.09 or gc = 0.21 ± 0.02 in units ofe2/h̄. The value obtained here forpq

can only be compared withpq ' 0.45 found by Soukouliset al [8] for the same Fermi
energyE = 2.0 and site energy distribution given by equation (2). When dealing with
the estimate obtained forgc we compare in units ofe2/h̄ our valuegc = 0.21± 0.02 with
gc = 0.10± 0.01 found from numerical scaling experiments based on the Anderson model
with a uniform distribution of site energies and the Kubo–Greenwood expression for the
conductivity [16]. The most commonly reported value ofgc in units of e2/h̄ is usually in
the range 0.03–0.2; however, values ofgc as large as 1 and 10 have also been found [19].

Figure 4. The results up toL = 7 repeated from figure 1 and, in addition, data of the same
type but with the application of an external magnetic field (perpendicular to one pair of the
walls without electrodes) for the strength characterized by the valuef = 0.36 of the quantum
flux fraction f = Ba2/φ0 which with a = 100 Å typical for metal–insulator nanocomposites
corresponds toB = 15 T. The normal negative metallic magnetoconductance forp > pq and
positive localization magnetoconductance forp < pq can be clearly seen.

In figure 4 we show the numerically evaluatedg versusp relations with the magnetic
field applied perpendicularly to one pair of the walls to which current feeding electrodes
are not connected. The strength of the magnetic field is characterized by the fraction of
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quantum flux,f = Ba2/φ0. The valuef = 0.36 used to obtain the data shown in figure 4
corresponds toB = 15 T for the assumed value ofa = 100 Å typical for metal–insulator
nanocomposites [6, 10]. As can be seen from figure 4 the magnetic field slightly decreases
the quantum percolation threshold frompq ' 0.44 forf = 0 topq ' 0.43 forf = 0.36 and
the critical conductance, respectively, fromgc ' 1.3 togc ' 1.0. Since the applied magnetic
field is relatively strong (and for smaller fields an even smaller influence has been found)
we see that magnetic field only slightly changes the coordinates of the critical point. In the
extended states phase the magnetic field generally decreases the dimensionless conductance.
This decrease is hardly seen close to the critical point, and the greater the distance frompq

the greater the magnitude of the conductance attenuation. Thus the magnetoconductance
is negative forp > pq and its magnitude decreases evidently with the increase of the
metal concentration. This is known behaviour, described by1G/G ' (ωcτ )2, whereG is
the conductance,1G is its change under a magnetic field,ωc is the electronic cyclotron
frequency andτ is the elastic scattering time [20]. Quite opposite is the behaviour of
the conductance in the localized states phase.g slightly increases for this phase with
magnetic field. This is consistent with the picture of electron wave localization. The
magnetic field breaks down the time-reversal invariance of the medium. Therefore with
an externally applied magnetic field, the coherent backscattering effect is reduced, which
implies an increase in the conductivity. The positive magnetoconductance is an inherent
characteristic of the disorder-induced localized states phase. This is a qualitative description
of the observation concluded on the basis of the influence of the magnetic field shown in
figure 4. It reveals, however, the very interesting methods of numerical study that can be
carried out using the technique described here for the disordered electronic system with an
applied external magnetic field.

4. Concluding remarks

To summarize, it has been shown in this paper that using a model of a 3D mesoscopic
granular metal system and the Landauer–Büttiker formula together with the retarded Green’s
function technique one can obtain a clear signature of the Anderson transition. Because
of the high electron density in the metal, neglect of electron–electron correlation may
be justified. The scattering strength has been controlled by the concentrationp of the
metal, which can be easily realized in metal–insulator nanocomposites. The idea of such
numerical studies as a tool for prediction of localization behaviour of 2D granular metal
nanocomposites was first suggested by Sheng and Zhang [6]. In this paper we have presented
an extension of this idea to 3D mesoscopic metal–insulator systems. Using a lattice of
relatively small linear sizeL and a finite-size scaling technique, appropriate for such small
sizes close to the critical point for Anderson transition, we have shown that a 3D metal–
insulator nanocomposite indicates, above the classical percolation transition, characterized
by the critical concentrationpc ' 0.312, also a quantum percolation transition characterized
by the critical concentrationpq , which for one particular electron Fermi energyE = 2.0 is
pq = 0.44± 0.1. In addition, the transition point has also been characterized by a critical
conductancegc = g(pq) = 1.28± 0.09 in units ofe2/h or gc = 0.21± 0.02 in units of
e2/h̄. The correlation length critical exponent found from the behaviour of theβ(g) scaling
function asν = 1.6 ± 0.02 remains in rough agreement with most recent estimates of this
exponent [3, 16].

The bicritical behaviour observed here may be used to model the electrical transport
behaviour of RuO2–glass films [10, 11, 12] or other metal–insulator nanocomposites. In
such systems experimental identification of the classical percolation transition and the
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quantum percolation transition may be difficult when the two transition points lie close
to the concentration(p) axis. Our earlier experimental studies based on the temperature
characteristic of resistance and 1/f noise behaviour, both versus the concentration of the
metallic component in RuO2–glass nanocomposites [10, 11, 12], seem to indicate that the
model presented in this paper may be of some use in the interpretation of the observed
low-temperature (below 1 K) and room temperature characteristics.
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